index.js 30 KB
Newer Older
xuzhenghua committed
1 2 3
import React, {Component} from 'react';
import {Tabs, WhiteSpace, Badge} from 'antd-mobile';
import './index.scss';
zhanghaozhe committed
4
import Bargain from './bargain'
xuzhenghua committed
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661


class Detail extends Component {
    state = {
        isbuy: 0,
        isvip: 0,
        stage_info: [
            {
                "stage_name": "预习阶段 机器学习中的数学基础",
                "lesson": [
                    {
                        "is_video": 1,
                        "name": "微积分",
                        "video_id": 1170,
                        "point": [
                            {
                                "name": "微积分的基本概念",
                                "type": 1
                            }
                        ],
                        "class_price": 0,
                        "is_preview": 0,
                        "is_class": 0,
                        "video_auth": 0
                    },
                    {
                        "is_video": 1,
                        "name": "概率论",
                        "video_id": 1171,
                        "point": [
                            {
                                "name": "概率论简介",
                                "type": 1
                            }
                        ],
                        "class_price": 0,
                        "is_preview": 0,
                        "is_class": 0,
                        "video_auth": 0
                    },
                    {
                        "is_video": 1,
                        "name": "线性代数",
                        "video_id": 1172,
                        "point": [
                            {
                                "name": "线性代数基础",
                                "type": 1
                            }
                        ],
                        "class_price": 0,
                        "is_preview": 0,
                        "is_class": 0,
                        "video_auth": 0
                    },
                    {
                        "is_video": 1,
                        "name": "凸优化",
                        "video_id": 1173,
                        "point": [
                            {
                                "name": "凸优化简介",
                                "type": 1
                            }
                        ],
                        "class_price": 0,
                        "is_preview": 0,
                        "is_class": 0,
                        "video_auth": 0
                    }
                ]
            },
            {
                "stage_name": "第一阶段 掌握基本模型 打开ML大门",
                "lesson": [
                    {
                        "is_video": 1,
                        "name": "第1课 回归问题与应用",
                        "video_id": 1118,
                        "point": [
                            {
                                "name": "线性回归",
                                "type": 1
                            },
                            {
                                "name": "logistic回归",
                                "type": 1
                            },
                            {
                                "name": "梯度下降",
                                "type": 1
                            },
                            {
                                "name": "实际工程海量数据下的logistic回归使用",
                                "type": 1
                            },
                            {
                                "name": "分布拟合与回归、用LR分类与概率预测",
                                "type": 2
                            },
                            {
                                "name": "用LR完成Kaggle比赛迈开第一步",
                                "type": 2
                            }
                        ],
                        "class_price": 0,
                        "is_preview": 0,
                        "is_class": 0,
                        "video_auth": 0
                    },
                    {
                        "is_video": 1,
                        "name": "第2课 决策树与树集成模型",
                        "video_id": 1119,
                        "point": [
                            {
                                "name": "不同类型的分类树模型",
                                "type": 1
                            },
                            {
                                "name": "决策树回归",
                                "type": 1
                            },
                            {
                                "name": "树模型过拟合与优化",
                                "type": 1
                            },
                            {
                                "name": "使用随机森林进行数据分类",
                                "type": 1
                            },
                            {
                                "name": "Bagging",
                                "type": 1
                            },
                            {
                                "name": "随机森林",
                                "type": 1
                            },
                            {
                                "name": "信用卡欺诈检测",
                                "type": 2
                            }
                        ],
                        "class_price": 0,
                        "is_preview": 0,
                        "is_class": 0,
                        "video_auth": 0
                    },
                    {
                        "is_video": 1,
                        "name": "第3课 SVM",
                        "video_id": 1120,
                        "point": [
                            {
                                "name": "线性可分支持向量机、线性支持向量机",
                                "type": 1
                            },
                            {
                                "name": "非线性支持向量机",
                                "type": 1
                            },
                            {
                                "name": "SMO",
                                "type": 1
                            },
                            {
                                "name": "使用SVM进行数据分类",
                                "type": 2
                            }
                        ],
                        "class_price": 0,
                        "is_preview": 0,
                        "is_class": 0,
                        "video_auth": 0
                    },
                    {
                        "is_video": 1,
                        "name": "第4课 最大熵与EM算法(上)",
                        "video_id": 1121,
                        "point": [
                            {
                                "name": "熵、相对熵、信息增益",
                                "type": 1
                            },
                            {
                                "name": "最大熵模型、IIS、GMM",
                                "type": 1
                            }
                        ],
                        "class_price": 0,
                        "is_preview": 0,
                        "is_class": 0,
                        "video_auth": 0
                    }
                ]
            },
            {
                "stage_name": "第二阶段 重中之重 特征工程",
                "lesson": [
                    {
                        "is_video": 1,
                        "name": "第5课 机器学习中的特征工程处理",
                        "video_id": 1122,
                        "point": [
                            {
                                "name": "数据清洗、异常点处理",
                                "type": 1
                            },
                            {
                                "name": "特征抽取、选择与组合策略",
                                "type": 1
                            },
                            {
                                "name": "特征处理与特征选择模板",
                                "type": 2
                            }
                        ],
                        "class_price": 0,
                        "is_preview": 0,
                        "is_class": 0,
                        "video_auth": 0
                    },
                    {
                        "is_video": 1,
                        "name": "第6课 多算法组合与模型最优化",
                        "video_id": 1123,
                        "point": [
                            {
                                "name": "机器学习问题场景分析、算法选择",
                                "type": 1
                            },
                            {
                                "name": "模型构建、模型性能分析与优化策略",
                                "type": 1
                            },
                            {
                                "name": "构建模型组合策略工具与模板",
                                "type": 2
                            }
                        ],
                        "class_price": 0,
                        "is_preview": 0,
                        "is_class": 0,
                        "video_auth": 0
                    }
                ]
            },
            {
                "stage_name": "第三阶段 工业实战 在实战中掌握一切",
                "lesson": [
                    {
                        "is_video": 1,
                        "name": "第7课 sklearn与机器学习实战",
                        "video_id": 1124,
                        "point": [
                            {
                                "name": "sklearn板块介绍",
                                "type": 1
                            },
                            {
                                "name": "sklearn完成数据预处理与特征工程",
                                "type": 1
                            },
                            {
                                "name": "建模流水线搭建",
                                "type": 1
                            },
                            {
                                "name": "经典Titanic案例,商品销量预测案例等",
                                "type": 2
                            }
                        ],
                        "class_price": 0,
                        "is_preview": 0,
                        "is_class": 0,
                        "video_auth": 0
                    },
                    {
                        "is_video": 1,
                        "name": "第8课 高级工具xgboost/lightGBM与建模实战",
                        "video_id": 1125,
                        "point": [
                            {
                                "name": "xgboost使用方法与高级功能",
                                "type": 1
                            },
                            {
                                "name": "lightGBM使用方法与高级功能",
                                "type": 1
                            },
                            {
                                "name": " Titanic与商品销量预测进阶,Kaggle案例实战",
                                "type": 2
                            }
                        ],
                        "class_price": 0,
                        "is_preview": 0,
                        "is_class": 0,
                        "video_auth": 0
                    },
                    {
                        "is_video": 1,
                        "name": "第9课 电商推荐系统",
                        "video_id": 1126,
                        "point": [
                            {
                                "name": "推荐系统与评估",
                                "type": 1
                            },
                            {
                                "name": "基于内容的推荐",
                                "type": 1
                            },
                            {
                                "name": "基于近邻的推荐--协同过滤",
                                "type": 1
                            },
                            {
                                "name": "隐语义模型",
                                "type": 1
                            },
                            {
                                "name": "从头手写搭建协同过滤与隐语义模型推荐",
                                "type": 2
                            },
                            {
                                "name": "基于scikit-surprise的推荐系统",
                                "type": 2
                            }
                        ],
                        "class_price": 0,
                        "is_preview": 0,
                        "is_class": 0,
                        "video_auth": 0
                    },
                    {
                        "is_video": 1,
                        "name": "第10课 聚类",
                        "video_id": 1127,
                        "point": [
                            {
                                "name": "K-means/K-Medoid",
                                "type": 1
                            },
                            {
                                "name": "层次聚类",
                                "type": 1
                            },
                            {
                                "name": "GMM",
                                "type": 1
                            },
                            {
                                "name": "K-means/GMM代码实现和实际应用分析",
                                "type": 2
                            }
                        ],
                        "class_price": 0,
                        "is_preview": 0,
                        "is_class": 0,
                        "video_auth": 0
                    },
                    {
                        "is_video": 1,
                        "name": "第11课 聚类与推荐系统实战",
                        "video_id": 1128,
                        "point": [
                            {
                                "name": "基于用户聚类的推荐系统",
                                "type": 2
                            },
                            {
                                "name": "推荐系统比赛案例(数据、代码)",
                                "type": 2
                            }
                        ],
                        "class_price": 0,
                        "is_preview": 0,
                        "is_class": 0,
                        "video_auth": 0
                    }
                ]
            },
            {
                "stage_name": "第四阶段 高阶知识 深入机器学习",
                "lesson": [
                    {
                        "is_video": 1,
                        "name": "第12课 贝叶斯网络",
                        "video_id": 1129,
                        "point": [
                            {
                                "name": "朴素贝叶斯",
                                "type": 1
                            },
                            {
                                "name": "有向分离",
                                "type": 1
                            },
                            {
                                "name": "马尔科夫模型",
                                "type": 1
                            }
                        ],
                        "class_price": 0,
                        "is_preview": 0,
                        "is_class": 0,
                        "video_auth": 0
                    },
                    {
                        "is_video": 1,
                        "name": "第13课 隐马尔科夫模型HMM",
                        "video_id": 1130,
                        "point": [
                            {
                                "name": "概率计算问题",
                                "type": 1
                            },
                            {
                                "name": "参数学习问题",
                                "type": 1
                            },
                            {
                                "name": "状态预测问题",
                                "type": 1
                            },
                            {
                                "name": "使用HMM进行中文分词",
                                "type": 2
                            }
                        ],
                        "class_price": 0,
                        "is_preview": 0,
                        "is_class": 0,
                        "video_auth": 0
                    },
                    {
                        "is_video": 1,
                        "name": "第14课 主题模型",
                        "video_id": 1131,
                        "point": [
                            {
                                "name": "pLSA",
                                "type": 1
                            },
                            {
                                "name": "共轭先验分布",
                                "type": 1
                            },
                            {
                                "name": "LDA",
                                "type": 1
                            },
                            {
                                "name": "使用LDA进行文档分类",
                                "type": 2
                            }
                        ],
                        "class_price": 0,
                        "is_preview": 0,
                        "is_class": 0,
                        "video_auth": 0
                    }
                ]
            },
            {
                "stage_name": "第五阶段 迈入深度学习 打开DL大门",
                "lesson": [
                    {
                        "is_video": 1,
                        "name": "第15课 神经网络初步",
                        "video_id": 1132,
                        "point": [
                            {
                                "name": "全连接神经网络",
                                "type": 1
                            },
                            {
                                "name": "反向传播算法与权重优化",
                                "type": 1
                            },
                            {
                                "name": "训练注意点",
                                "type": 1
                            },
                            {
                                "name": "通用混合神经网络模板",
                                "type": 1
                            },
                            {
                                "name": "手写神经网络解决非线性切分问题",
                                "type": 2
                            }
                        ],
                        "class_price": 0,
                        "is_preview": 0,
                        "is_class": 0,
                        "video_auth": 0
                    },
                    {
                        "is_video": 1,
                        "name": "第16课 卷积神经网络与计算机视觉",
                        "video_id": 1133,
                        "point": [
                            {
                                "name": "卷积神经网络结构分析",
                                "type": 1
                            },
                            {
                                "name": "过拟合与随机失活",
                                "type": 1
                            },
                            {
                                "name": "卷积神经网络理解",
                                "type": 1
                            },
                            {
                                "name": "典型网络结构详解",
                                "type": 1
                            },
                            {
                                "name": "利用ResNet与inception解决一般图像分类问题套路",
                                "type": 2
                            }
                        ],
                        "class_price": 0,
                        "is_preview": 0,
                        "is_class": 0,
                        "video_auth": 0
                    },
                    {
                        "is_video": 1,
                        "name": "第17课 循环神经网络与自然语言处理",
                        "video_id": 1134,
                        "point": [
                            {
                                "name": "循环神经网络",
                                "type": 1
                            },
                            {
                                "name": "长时依赖问题与长短时记忆网络",
                                "type": 1
                            },
                            {
                                "name": "BPTT算法",
                                "type": 1
                            },
                            {
                                "name": "利用循环神经网络生成文本作诗",
                                "type": 2
                            }
                        ],
                        "class_price": 0,
                        "is_preview": 0,
                        "is_class": 0,
                        "video_auth": 0
                    },
                    {
                        "is_video": 1,
                        "name": "第18课 深度学习实践",
                        "video_id": 1135,
                        "point": [
                            {
                                "name": "Caffe应用要点",
                                "type": 1
                            },
                            {
                                "name": "TensorFlow/Keras简介",
                                "type": 1
                            },
                            {
                                "name": "用神经网络完成图像分类与特征提取",
                                "type": 2
                            },
                            {
                                "name": "用Keras构建文本情感分析模型",
                                "type": 2
                            }
                        ],
                        "class_price": 0,
                        "is_preview": 0,
                        "is_class": 0,
                        "video_auth": 0
                    }
                ]
            }
        ]
    }

    render() {
        const tabs = [
            {title: '介绍'},
            {title: '大纲'}
        ];

        return (
            <div className='detail-box'>
                <div className="toapp">APP打开</div>
                {/*头部*/}
                <div className="detail-header">
                    <i className={'iconfont iconiconfront-68 return'}></i>
                    <span className='herder'>课程详情</span>
                    <i className={'iconfont icongouwuche shopping-cart'}></i>
                </div>
                {/*课程*/}
                <div className='course-content'>
                    <div className='cover'>
                        <img src='https://julyedu-img-public.oss-cn-beijing.aliyuncs.com/Public/Image/4c5ccac604.jpg'
                             alt=""/>
                    </div>
                    <div className="info">
                        <p className='title'>区块链实战[一对一实战 公区块链实战[一对一实战 ...</p>
                        <p className='contact text-overflow-2'>从零入门区块链和比特币,送干货从零入门</p>
                        <div className='des'>
                            {this.state.isbuy === 0 && <p className="course-price">
                                <span className="new">3980</span>
                                <span className="old">5680</span>
                            </p>
                            }
                            {this.state.isbuy === 1 &&
                            <a href="/#" className="isbuy">已购买</a>
                            }
                        </div>
                    </div>
                </div>
                {/*正常课程已购买时显示*/}
                {
                    this.state.isbuy === 1 &&
                    <div className='group'>
                        上课QQ群:449141326,加群请备注您的学号:479409
                    </div>
                }
                {/*vip课程显示*/}
                {
                    this.state.isvip === 1 &&
                    <div className="vip">
                        <p>已开通年会员:2019/03/02  2020/03/02</p>
                        <p>年会员QQ群:967114537,加群请备注您的学号:479409</p>
                    </div>
                }


                {/*服务承诺*/}
                <div className='promise'>
                    <label>服务承诺</label>
                    <p>直播答疑 · 视频回放 · 讲师助教组长同答疑 · 毕业考核等十多项服务</p>
                </div>

                {/*分享赚钱*/}
                <div className='share-ranking'>
                    <span className="title">排行榜:</span>
                    <span className="ranking-mess"><img src="https://julyedu-img-public.oss-cn-beijing.aliyuncs.com/Public/Image/4c5ccac604.jpg" alt=""/><i>22</i></span>
                    <span className="ranking-mess"><img src="https://julyedu-img-public.oss-cn-beijing.aliyuncs.com/Public/Image/4c5ccac604.jpg" alt=""/><i>22</i></span>
                    <img className="ranking-ellipsis" src="https://julyedu-img.oss-cn-beijing.aliyuncs.com/Image/train/ellipsis.png" alt=""/>
                    <button className="share">分享赚22</button>
                </div>
zhanghaozhe committed
662 663 664 665

                {/*砍价*/}
                <Bargain/>

xuzhenghua committed
666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728
                {/*课程介绍、大纲*/}
                <div className='course-detail'>
                    <WhiteSpace/>
                    <Tabs tabs={tabs}>
                        {/*介绍*/}
                        <div className='introduce'>
                            讲师:寒小阳、褚博士、David、林老师、张雨石、李老师
                            课时:线上课每次至少2小时,线下课每次至少4小时
                            时间:随到随学,视频课件代码作考一应俱全,且讲师助教 答疑
                            <img
                                src='https://julyedu-img-public.oss-cn-beijing.aliyuncs.com/Public/Image/4c5ccac604.jpg'
                                alt=""/>
                        </div>
                        {/*大纲*/}
                        <div className='outline'>
                            {
                                this.state.stage_info.map((item, index) => {
                                    return (
                                        <div className='stagebox' key={index}>
                                            <h1 className='stage text-overflow-1'>{item.stage_name}</h1>
                                            {
                                                item.lesson.map((item, index) => {
                                                    return (
                                                        <ul key={index}>
                                                            <h2 className='classhour text-overflow-1'>{item.name}</h2>
                                                            {
                                                                item.point.map((item, index) => {
                                                                    const type = (
                                                                        <span>
                                                                            {item.type === 1 &&
                                                                            <span>知识点{index + 1}</span>
                                                                            } {item.type === 2 &&
                                                                        <span className='red'>实战项目:</span>
                                                                        }
                                                                        </span>
                                                                    )

                                                                    return (
                                                                        <li className='points text-overflow-1'
                                                                            key={index}>{type}{item.name}</li>
                                                                    )

                                                                })
                                                            }
                                                        </ul>
                                                    )
                                                })
                                            }
                                        </div>
                                    )
                                })
                            }
                        </div>
                    </Tabs>
                    <WhiteSpace/>
                </div>
            </div>
        );
    }

}

export default Detail;